В МГУ ученые обучили нейросеть анализу научных текстов

Сотрудники лаборатории машинного обучения и семантического анализа Института искусственного интеллекта МГУ при поддержке портала eLibrary обучили и опубликовали в открытом доступе нейронную сеть для получения семантических векторных представлений (эмбеддингов) научных текстов на русском языке SciRus-tiny. С ее помощью можно решать множество прикладных задач, начиная с поиска и классификации и заканчивая извлечением научных терминов.

«Модель показывает высокие значения метрик, имея при этом небольшое количество параметров, а значит, гораздо меньшие требования к вычислительным ресурсам, – прокомментировал руководитель междисциплинарной группы проекта академик Алексей Хохлов. – Данное свойство делает SciRus-tiny эффективной моделью для использования в условиях высокой нагрузки. Разработанная нейросеть ляжет в основу поисково-рекомендательной системы для ученых, тестирование которой начнется уже в начале следующего года».

Также исследователи опубликовали в открытом доступе бенчмарк ruSciBench для оценки эмбеддингов научных текстов, состоящий из 14 задач, выполняемых на почти 400 тыс. параллельных аннотациях на русском и английском языках. Все работы по обучению модели и подготовке бенчмарка были проведены в рамках гранта междисциплинарной научно-образовательной школы МГУ «Математические методы анализа сложных систем» (проект «Разработка математических методов машинного обучения для обработки текстовой научной информации большого объема»).

(Источник: https://www.msu.ru/science/main_themes/uchenye-mgu-obuchili-neyroset-analizu-nauchnykh-tekstov.html)

Авторизация
*
*
Регистрация
*
*
*
Пароль не введен
*
Генерация пароля